Module 13: Normal Distributions

This module focuses on the normal distribution and how to use it.

Reviewed 05 May 05/ MODULE 13

Sampling Distributions

Large Popula	tion of people	149 146 Popul	146 161 175 140 ation of weights
Individual	Means for	Means for	-
observations	n = 5	n = 20	
149	153.0	151.6	
146	146.4	151.3	
· · ·	• • •	• • •	
$\mu = 150 \text{ lbs}$	$\mu = 150 \text{ lbs}$	$\mu = 150$ lbs	
$\sigma^2 = 100$ lbs	$\sigma_{\overline{x}}^2 = \frac{\sigma^2}{n} = 20 \text{ lbs}^2$	$\sigma_{\overline{x}}^2 = \frac{\sigma^2}{n} = 5 \mathrm{lb}\mathrm{s}^2$	
$\sigma = 10$ lbs	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = 4.47 \text{ lbs}$	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = 2.23 \mathrm{l}$	bs

Normal Distribution Density Function

The normal distribution is defined by the density function: $1(2\pi)^2$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

This function happens to be Symmetrical, Bell-shaped, and easy to use tables are available.

Normal Distribution

Population Distributions

Population Distributions

We can use the normal tables to obtain probabilities for measurements for which this frequency distribution is appropriate. For a reasonably complete set of probabilities, see TABLE MODULE 1: NORMAL TABLE.

This module provides most of the z-values and associated probabilities you are likely to use; however, it also provides instructions demonstrating how to calculate those not included directly in the table.

Normal Tables (contd.)

The table is a series of columns containing numbers for z and for P(z). The z represents the z-value for a normal distribution and P(z) represents the area under the normal curve to the left of that z-value for a normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 1$.

(1) Area Below z = -2; P(z < -2) = 0.0228

(2) Area Below z = -1; P(z < -1) = 0.1587

(1) Area Below z = +2; P(z > +2) = 0.0228

(2) Area Below z = +1; P(z > +1) = 0.1587

(3) Area Below z = 0; P(z > 0) = 0.5000

Calculating the Area Under the Normal Curve

Calculating the Area Under the Normal Curve

(2) Area between -2, +2; P(-2 < z < +2) up to z = +2: .9772 up to z = -2: .0228 .9544

Calculating the Area Under the Normal Curve

(3) Area between -2, +1; P(-2 < z < +1)up to z = +1: .8413 up to z = -2: .0228 .8185

Standard Normal Distribution

(1) Values of z that bracket middle 95% -1.96 to +1.96

Standard Normal Distribution

(1) Values of z that bracket middle 99% -2.576 to +2.576

Calculating z-values

If
$$X \sim N(\mu_x, \sigma_x)$$

and $Z \sim N(0, 1)$
i.e. $\mu_z = 0$ and $\sigma_z^2 = 1$

then the corresponding z value for x is given as

$$z = \frac{x - \mu_x}{\sigma_x}$$

Some Questions

The following questions reference a normal distribution with a mean $\mu = 150$ lbs, a variance $\sigma^2 = 100$ lbs², and a standard deviation $\sigma = 10$ lbs. Such a distribution is often indicated by the symbols N(μ , σ) = N(150, 10).

- 1. What is the likelihood that a randomly selected individual observation is within 5 lbs of the population mean $\mu = 150$ lbs?
- 2. What is the likelihood that a mean from a random sample of size n = 5 is within 5 lbs of $\mu = 150$ lbs?
- 3. What is the likelihood that a mean from a random sample of size n = 20 is within 5 lbs of $\mu = 150$ lbs?

Solution to Question 1

Solution to Question 2

$$z_{Upper} = \frac{x_{Upper} - \mu_x}{\sigma_x} = \frac{155 - 150}{4.47} = 1.12 \text{, Area up to } z_{upper} = 0.86864$$
$$z_{Lower} = \frac{x_{Lower} - \mu_x}{\sigma_x} = \frac{145 - 150}{4.47} = -1.12 \text{, Area up to } z_{lower} = 0.13136$$

Area between z_{upper} and $z_{lower} = 0.73728$

Solution to Question 3

$$z_{Upper} = \frac{x_{Upper} - \mu_x}{\sigma_x} = \frac{155 - 150}{2.23} = 2.24 \quad \text{, Area up to } z_{upper} = 0.98745$$
$$z_{Lower} = \frac{x_{Lower} - \mu_x}{\sigma_x} = \frac{145 - 150}{2.23} = -2.24 \quad \text{, Area up to } z_{lower} = 0.01255$$

Area between z $_{upper}$ and z $_{lower} = 0.97490$

13 - 24

Some More Questions

- When centered about $\mu = 150$ lbs, what proportion of the total distribution does an interval of length 10 lbs cover?
- How many standard deviations long must an interval be to cover the middle 95% of the distribution?
- From μ (??) standard deviations to μ + (??) standard deviations covers (??) % of the distribution?

All these questions require that the value for μ be known and that it be placed in the center of these "intervals".